
lab

Jan 29, 2021

User Guide:

1 Quickstart 3

2 Concepts 7

3 Command Line Interface 9

4 Tracking Machine Learning Experiments 13

5 Managing Deep Learning Experiments 17

6 Working with Jupyter Notebooks 21

7 Model Repository 23

8 Frequently Asked Questions 27

9 Examples Gallery 29

i

ii

lab

Lab is an open source platform for managing machine learning pipelines. It addresses three core concepts: Re-
producibility, Logging, and Model Persistence. Lab is lightweight and was designed to easily integrate with your
existing training scripts.

Warning: Lab is in active development and the current version of Lab is a beta release. This means that APIs and
storage formats are subject to breaking change.

User Guide: 1

lab

2 User Guide:

CHAPTER 1

Quickstart

1.1 Installing Lab

For the time being, lab is available through our github repository:

git clone https://github.com/beringresearch/lab
cd lab
pip install --editable .

Note: You cannot install Lab on the MacOS system installation of Python. We recommend installing Python 3
through the Homebrew package manager using brew install python.

1.2 Setting up your first Project

Lab projects are initiated using a requirements.txt file. This ensures a consistent and reproducible environment.

Let’s create a simple environment that imports sklearn:

echo "scikit-learn" >> requirements.txt
lab init --name test

Lab will run through project initialisation and create a new test project with its own virtual environment.

1.3 Creating your first Lab Experiment

Training scripts can be placed directly into the test/ directory. Here’s an example training script, train.py, set up to
train a Random Forest classifier with appropriate Lab logging API:

3

https://brew.sh/

lab

from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score

from lab.experiment import Experiment # Import Experiment

e = Experiment() # Initialise Lab Experiment

@e.start_run # Indicate the start of the Experiment
def train():

iris = datasets.load_iris()
X = iris.data
y = iris.target

X_train, X_test, \
y_train, y_test = train_test_split(X, y,

test_size=0.24,
random_state=42)

n_estimators = 100

e.log_features(['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width'])
clf = RandomForestClassifier(n_estimators = n_estimators)
clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average = 'macro')

e.log_metric('accuracy_score', accuracy) # Log accuracy
e.log_metric('precision_score', precision) # Log aprecision

e.log_parameter('n_estimators', n_estimators) # Log parameters of your choice

e.log_model('randomforest', clf) # Log the actual model

1.4 Running a Lab Experiment

The Experiment can now be launched through:

lab run train.py

Lab will log performance metrics and model files into appropriate Experiment folders.

1.5 Compare Lab Experiments

Multiple Experiments can be compared from the root of the Project folder:

lab ls

Experiment Source Date accuracy_score precision_score
------------ ------------------ ---------- ---------------- -----------------

(continues on next page)

4 Chapter 1. Quickstart

lab

(continued from previous page)

49ffb76e train_mnist_mlp.py 2019-01-15 0.97: 0.97:
261a34e4 train_mnist_cnn.py 2019-01-15 0.98: 0.98:

1.5. Compare Lab Experiments 5

lab

6 Chapter 1. Quickstart

CHAPTER 2

Concepts

Lab is centred around three core concepts: Reproducibility, Logging, and Model Persistence. Lab is designed to
integrate with your existing training scripts, with imposing as few constraints as possible.

2.1 Reproducibility

Lab Projects are designed to be shared and re-used. This feature makes havy use of Python’s virtualenv module,
enabling users to precisely define modules and environments that are required to run the associated experiments.

Every Project is initiated using a requirements.txt file.

2.2 Logging

Lab was designed to benchmark multiple predictive models and hyperparameters. To accomplish this, it implements a
simple API that stores:

• Feature names

• Hyperparameters

• Performance metrics

• Model files

2.3 Model Persistence

Models are logged using the joblib module. This applies to both sklearn and keras experiments. This simple
structure allows for a quick performance assessment and deployment of a model of choice into production.

7

https://pip.readthedocs.io/en/1.1/requirements.html

lab

2.4 Example Use Cases

At Bering, we use Lab for a number of use cases:

Data Scientists track individual experiments locally on their machine, consistently organising all files and artefacts
for reproducibility. By setting up a naming schema, Teams can work together on the same datasets to benchmark
performance of novel ML algorithms.

Production Engineers assess model performances and decide on the best possible model to be served in production
environments. Lab’s strict model versioning serves as a link between research and development environment and
evolving production components.

ML Researchers can publish code to GitHub as a Lab Project, making it easy for others to reproduce findings.

8 Chapter 2. Concepts

CHAPTER 3

Command Line Interface

Lab is invoked through a simple Command Line Interface (CLI).

lab --help

Usage: lab [OPTIONS] COMMAND [ARGS]...

Bering's Machine Learning Lab

Copyright 2020 Bering Limited. https://beringresearch.com

Options:
--help Show this message and exit.

Commands:
config Global Lab configuration
info Display system-wide information
init Initialise a new Lab Project
ls Compare multiple Lab Experiments
notebook Launch a jupyter notebook
pull Pulls Lab Experiment from minio to current...
push Push Lab Experiment to minio
rm Remove a Lab Experiment
run Run a training script
show Show a Lab Experiment
update Update Lab Environment from Project's...

3.1 General Parameters

3.1.1 config minio

Setup remote minio host

9

lab

Usage: lab config minio [OPTIONS]

Setup remote minio host

Options:
--tag TEXT helpful minio host tag [required]
--endpoint TEXT minio endpoint address [required]
--accesskey TEXT minio access key [required]
--secretkey TEXT minio secret key [required]
--help Show this message and exit.

tag option is a helpful name to identify a minio endpoint. It can be used to quickly access push and pull APIs.

3.1.2 info

Display system-wide information, including Lab version, number of CPUs, etc.

Usage: lab info [OPTIONS]

3.2 Project

3.2.1 init

Initialise a new Lab Project.

Usage: lab init [OPTIONS]

Options:
--name TEXT environment name
--help Show this message and exit.

Command is run in the presence of a requirements.txt file that describes the Project environment. Lab will
create a dedicate virtual environemnt in a .venv directory.

3.2.2 ls

List Lab Experiments and their performance metrics.

Usage: lab ls [OPTIONS] [SORT_BY]

Options:
--help Show this message and exit.

Optional SORT_BY option is a string column name in the results table. For example, if a Lab Experiment logged a
metric AUC, calling lab ls AUC sort all Experiments by decreasing AUC values. The default is to show the most
recently completed Lab run.

3.2.3 show

Create a PNG file of experiment-data-script-hyperparameter-performance diagram.

10 Chapter 3. Command Line Interface

lab

Usage: lab show

Options:
--help Show this message and exit.

3.2.4 notebook

Lancuhes a jupyter notebook, pointing to the notebooks directory. If this is the first time launching the notebook,
Lab will automatically create a jupyter kernel using the requirements.txt file. Kernel name is stored on your
system as TIMESTAMP_PROJECT_NAME.

3.2.5 update

Updates the Lab project. Can be run if the local Lab version was updated or if requirements.txt has been
modified with additional dependencies.

3.3 Experiment

3.3.1 run

Execute a Lab Experiment.

Usage: lab run [OPTIONS] [SCRIPT]...

Options:
--help Show this message and exit.

3.3.2 rm

Remove a Lab Experiment

Usage: lab rm [OPTIONS] EXPERIMENT_ID

EXPERIMENT_ID can be obtained by running lab ls inside the Project directory.

3.4 Model Management

3.4.1 push

Push Lab Project to a configured minio repository.

lab push --tag [MINIO_TAG] --bucket [TEXT] --force.

3.3. Experiment 11

lab

3.4.2 pull

Pull a Lab Project from a configured minio repository.

lab pull --tag [MINIO_TAG] --bucket [TEXT] --project [TEXT] --force.

12 Chapter 3. Command Line Interface

CHAPTER 4

Tracking Machine Learning Experiments

The Lab logging component was designed to interface directly with your training code without disrupting the machine
learning workflow. Currently, users can keep track of the following experiment artfacts:

• e.log_features: Feature names

• e.log_parameter: Hyperparameters

• e.log_metric: Performance metrics

• e.log_artifact: Experimental artifacts

• e.log_model: Model persistence

4.1 Feature names

Data features are simply lists of feature names or column indices. Consider the snippet:

from sklearn import datasets

iris = datasets.load_iris()
feature_names = iris['feature_names']

print(feature_names)

['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)']

We can log these features by adding a few lines of code:

from sklearn import datasets
from lab.experiment import Experiment #import lab Experiment

(continues on next page)

13

lab

(continued from previous page)

e = Experiment()

Initialize Lab Experiment
@e.start_run
def train():

iris = datasets.load_iris()
feature_names = iris['feature_names']

Log features
e.log_features(feature_names)

4.2 Hyperparameters: e.log_parameter

Let’s carry on with the Iris dataset and consider a Random Forest Classifier with an exhaustive grid search along the
number of trees and maximum depth of a tree:

from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from lab.experiment import Experiment #import lab Experiment

e = Experiment()

Initialize Lab Experiment
@e.start_run
def train():

iris = datasets.load_iris()

feature_names = iris['feature_names']

Log features
e.log_features(feature_names)

parameters = {'n_estimators': [10, 50, 100],
'max_depth': [2, 4]}

rfc = RandomForestClassifier()

Run a grid search
clf = GridSearchCV(rfc, parameters)
clf.fit(iris.data, iris.target)

best_parameters = clf.best_estimator_.get_params()

Log parameters
e.log_parameter('n_estimators', best_parameters['n_estimators'])
e.log_parameter('max_depth', best_parameters['max_depth'])

4.3 Performance Metrics: e.log_metric

Lab was designed to easily compare multiple machine lerning experiments through consistent performance metrics.
Let’s expand our example and assess model accuracy and precision.

14 Chapter 4. Tracking Machine Learning Experiments

lab

from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score
from lab.experiment import Experiment

e = Experiment()

Initialize Lab Experiment
@e.start_run
def train():

iris = datasets.load_iris()

feature_names = iris['feature_names']

Log features
e.log_features(feature_names)

parameters = {'n_estimators': [10, 50, 100],
'max_depth': [2, 4]}

Run a grid search
rfc = RandomForestClassifier()
clf = GridSearchCV(rfc, parameters)
clf.fit(iris.data, iris.target)

best_parameters = clf.best_estimator_.get_params()

Log parameters
e.log_parameter('n_estimators', best_parameters['n_estimators'])
e.log_parameter('max_depth', best_parameters['max_depth'])

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target,
test_size=0.25, random_state=42)

rfc = RandomForestClassifer(n_estimators = best_parameters['n_estimators'],
max_depth = best_parameters['max_depth'])

rfc.fit(X_train, y_train)

Generate predictions
y_pred = rfc.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average = 'macro')

Log performance metrics
e.log_metric('accuracy_score', accuracy)
e.log_metric('precision_score', precision)

4.4 Experiment Artifacts: e.log_artifact

In certain cases, it may be desirable for a Lab Experiment to write certain artifacts to a temporary folder - e.g. ROC
curves or Tensorboard log directory. Lab naturally bundles these artifacts within each respective experiment for sub-
sequent exploration.

Let’s explore an example where Lab logs Tensorboard outputs:

4.4. Experiment Artifacts: e.log_artifact 15

lab

Additional imports would go here
from keras.callbacks import TensorBoard
import tempfile

from lab.experiment import Experiment

e = Experiment()

@e.start_run
def train():

... Further training code goes here

Create a temporary directory for tensorboard logs
output_dir = dirpath = tempfile.mkdtemp()
print("Writing TensorBoard events locally to %s\n" % output_dir)

tensorboard = TensorBoard(log_dir=output_dir)

model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
callbacks=[tensorboard])

Log tensorboard artifact
e.log_artifact('tensorboard', output_dir)

In this example, Tensorboard logs are written to a temporary folder, which can be tracked in real-time. Once the run
is complete, Lab moves all the directory content into a subdirectory of the current Lab Experiment.

4.5 Model Persistence: e.log_model

Finally, it’s useful to store model objects themselves for future use. Consider our fitted GridSearchCV object clf
from an earlier example. It can now be logged using a simple expression:

e.log_model('GridSearchCV', clf)

16 Chapter 4. Tracking Machine Learning Experiments

CHAPTER 5

Managing Deep Learning Experiments

Deep Learning experiment lifecycle generates a rich set of data artifacts, e.g., expansive datasets, complex model
architectures, varied hyperparameters, learned weights, and training logs. To produce an effective model, a researcher
often has to iterate over multiple scripts, making it challenging to reproduce complex experiments.

Lab functionality offers a clean and standardised interface for managing the many moving parts of a Deep Learning
experiment.

5.1 MNIST Example

Consider the following lab training script. Let’s set up our hyperparameters and training, validation, testing sets:

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop
from keras.callbacks import TensorBoard

import tempfile

from sklearn.metrics import accuracy_score, precision_score

from lab.experiment import Experiment

BATCH_SIZE = 128
EPOCHS = 20
CHECKPOINT_PATH = 'tf/weights'
num_classes = 10

the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

(continues on next page)

17

lab

(continued from previous page)

x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

Set up a simple model and train:

e = Experiment()

@e.start_run
def train():

Create a temporary directory for tensorboard logs
output_dir = tempfile.mkdtemp()
print("Writing TensorBoard events locally to %s\n" % output_dir)
tensorboard = TensorBoard(log_dir=output_dir)

During Experiment execution, tensorboard can be viewed through:
tensorboard --logdir=[output_dir]

model.fit(x_train, y_train,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
verbose=1,
validation_data=(x_test, y_test),
callbacks=[tensorboard])

model.save_weights(CHECKPOINT_PATH)

y_prob = model.predict(x_test)
y_classes = y_prob.argmax(axis=-1)
actual = y_test.argmax(axis=-1)

accuracy = accuracy_score(y_true=actual, y_pred=y_classes)
precision = precision_score(y_true=actual, y_pred=y_classes,

average='macro')

Log tensorboard
e.log_artifacts('tensorboard', output_dir)
e.log_artifacts('weights', CHECKPOINT_PATH)

Log all metrics
e.log_metric('accuracy_score', accuracy)
e.log_metric('precision_score', precision)

Log parameters
e.log_parameter('batch_size', BATCH_SIZE)

(continues on next page)

18 Chapter 5. Managing Deep Learning Experiments

lab

(continued from previous page)

e.log_parameter('epochs', EPOCHS)

When training on distributed systems with Horovod, model.fit element can be abstracted into a file, say horovod-
train.py and called directly from the train() method:

import subprocess

args = ['-np', str(8), # 8 GPUs
'-H', 'localhost:8', 'python',
'horovod-train.py',
'--checkpoint', CHECKPOINT_PATH,
'--batch-size', BATCH,
'--epochs', EPOCHS]

Note that you need to enable your Horovod script to accept some basic model hyperparameters that you wish to log
downstream.

5.1. MNIST Example 19

lab

20 Chapter 5. Managing Deep Learning Experiments

CHAPTER 6

Working with Jupyter Notebooks

Lab makes it easy to work with Jupyter notebooks by creating a kernel directly from a lab project

lab notebook

Once the kernel is created, you can select it from any Jupyter session.

Lab also provides a notebooks directory to organise and maintain all notebooks associated with a Lab Project.

21

lab

22 Chapter 6. Working with Jupyter Notebooks

CHAPTER 7

Model Repository

Lab uses minio to store Projects. Minio is a high performance distributed object storage server, designed for large-
scale private cloud infrastructure. This makes it a great fit as a storage environment for multiple Lab Projects and
Experiments. Lab makes it trivial to back up completed Projects and share them across teams.

23

https://minio.io

lab

7.1 Configuring minio server

There are a number of ways to install minio on a wide range of operating systems. See more details installation
instructions in minio documentation pages.

7.2 Setting up Lab minio interface

Once minio is up and running, you will need to make a note of the endpoint, access key, and secret key.
Lab supports multiple minio configurations through a convenient tagging system. Each configuration can be set up
through CLI:

lab config minio --tag [MINIO_TAG] -- endpoint [TEXT] --accesskey [TEXT] --secretkey
→˓[TEXT]

Note that the endpoint is simply an IP address and port of a minio host, e.g. 192.168.1.50:9000.

24 Chapter 7. Model Repository

https://docs.minio.io

lab

7.3 Storing Lab Projects

Lab Projects can be pushed to a specific minio host by running a simple command from the Project root folder:

lab push --tag [MINIO_TAG] --bucket [TEXT] .

Here, --tag specifies a nickname of an exisiting minio connection and --bucket refers to a unique destination
name on minio host, analogous to an S3 bucket.

Each project contains a .labignore file that specifies intentionally untracked files to ignore during a push. A default
.labignore will omit the virtual environment directory .venv. Further omitions can be specified on each line:

.venv
data
experiments/abcdefgh/model.joblib

7.4 Pruning remote repository

Sometimes it may be desirable to prune a remote repository. Pruning simply replaces the entire content of a remote
repository with local files. The user is warned just before proceding, as this operation can have undersirable conse-
quences.

lab push --tag [MINIO_TAG] --bucket [TEXT] --force .

7.5 Pulling from a remote repository

To retrieve a Lab Project from a minio host, run a simple command from folder into which you’d like to pull the
Project:

lab pull --tag [MINIO_TAG] --bucket [TEXT] --project [TEXT].

In cases where connection with minio has already been establish, a project can be pushed/pulled directly from the
project directory via lab push or lab pull without further options.

7.3. Storing Lab Projects 25

lab

26 Chapter 7. Model Repository

CHAPTER 8

Frequently Asked Questions

8.1 How can I include a github repository in a lab Project

Like pip, lab works with requirements.txt file. To let lab know that your virtual environment should contain
a package maintained on github, add the following line to your requirements.txt:

-e git+https://github.com/beringresearch/ivis#egg=ivis

Modify repository and package information accordingly.

27

lab

28 Chapter 8. Frequently Asked Questions

CHAPTER 9

Examples Gallery

Several examples of how Lab can be used in common machine learning projects.

9.1 Getting started with Lab and scikit-learn

This example illustrates how Lab can be used to create and run a simple classifier on the iris dataset.

Begin by creating a new Lab Project:

>>> echo "scikit-learn" > requirements.txt
>>> lab init --name simple-iris

import argparse
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score

from lab.experiment import Experiment

parser = argparse.ArgumentParser('Test arguments')

parser.add_argument('--n_estimators', type=int, dest='n_estimators')
args = parser.parse_args()

n_estimators=args.n_estimators

if n_estimators is None:
n_estimators=100
max_depth=2

if __name__ == "__main__":
e = Experiment(dataset='iris_75')

(continues on next page)

29

lab

(continued from previous page)

@e.start_run
def train():

iris = datasets.load_iris()
X = iris.data
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.25,
random_state=42)

e.log_features(['Sepal Length', 'Sepal Width', 'Petal Length',
'Petal Width'])

clf = RandomForestClassifier(n_estimators=n_estimators)

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average = 'macro')

e.log_metric('accuracy_score', accuracy)
e.log_metric('precision_score', precision)

e.log_parameter('n_estimators', n_estimators)
e.log_parameter('max_depth', max_depth)

e.log_model('randomforest', clf)

After execute training script through the lab run command.

>>> lab run train.py
>>> lab ls

Total running time of the script: (0 minutes 0.000 seconds)

9.2 Running Keras models with Tensorboard

Lab integrates into a typical keras workflow.

WARNING: model persistence in Keras can be complicated, especially when working with complext models. It is
recommended to checkpoint each training epoch independently from Lab’s log_model API.

Bering by creating a new Lab Project:

>>> echo "keras" > requirements.txt
>>> lab init --name simple-keras

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop
from keras.callbacks import TensorBoard

(continues on next page)

30 Chapter 9. Examples Gallery

lab

(continued from previous page)

import tempfile

from sklearn.metrics import accuracy_score, precision_score

from lab.experiment import Experiment

batch_size = 128
num_classes = 10
epochs = 20

the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])

e = Experiment()

@e.start_run
def train():

Create a temporary directory for tensorboard logs
output_dir = tempfile.mkdtemp()
print("Writing TensorBoard events locally to %s\n" % output_dir)
tensorboard = TensorBoard(log_dir=output_dir)

During Experiment execution, tensorboard can be viewed through:
tensorboard --logdir=[output_dir]

model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
callbacks=[tensorboard])

(continues on next page)

9.2. Running Keras models with Tensorboard 31

lab

(continued from previous page)

y_prob = model.predict(x_test)
y_classes = y_prob.argmax(axis=-1)
actual = y_test.argmax(axis=-1)

accuracy = accuracy_score(y_true=actual, y_pred=y_classes)
precision = precision_score(y_true=actual, y_pred=y_classes,

average='macro')

Log tensorboard
e.log_artifacts('tensorboard', output_dir)

Log all metrics
e.log_metric('accuracy_score', accuracy)
e.log_metric('precision_score', precision)

Log parameters
e.log_parameter('batch_size', batch_size)

Save model
e.log_model('mnist-mlp', model)

Total running time of the script: (0 minutes 0.000 seconds)

32 Chapter 9. Examples Gallery

	Quickstart
	Concepts
	Command Line Interface
	Tracking Machine Learning Experiments
	Managing Deep Learning Experiments
	Working with Jupyter Notebooks
	Model Repository
	Frequently Asked Questions
	Examples Gallery

